February 25, 2014

Water vapour found on Jupiter-like planet




For the first time, scientists have detected water vapour in the  atmosphere of a Jupiter-like planet orbiting a nearby star using a novel technique.
The new technique could help researchers learn about how many planets with water - like Earth - exist within our galaxy, researchers said.
Researchers at The California Institute of Technology (Caltech) and several other institutions analysed the gaseous atmospheres of such extrasolar planets and have made the first detection of water in the atmosphere of the Jupiter-mass planet orbiting tau Bootis star.  Scientists have previously detected water vapour on a handful of other planets, but these detections could only take place under very specific circumstances, said Alexandra Lockwood, the first author of the study.  Lockwood and her adviser Geoffrey Blake applied a novel technique for finding water in a planetary atmosphere. Other researchers had used similar approaches previously to detect carbon monoxide in tau Bootis b. The method utilised the radial velocity (RV) technique - a technique commonly used in the visible region of the spectrum to which our eyes are sensitive - for discovering non-transiting exoplanets.
Jupiter is the fifth planet from the Sun and the largest planet in the Solar System. It is a gas giant with mass one-thousandth of that of the Sun but is two and a half times the mass of all the other planets in the Solar System combined. Jupiter is classified as a gas giant along with Saturn, Uranus and Neptune. Together, these four planets are sometimes referred to as the Jovian or outer planets. The planet was known by astronomers of ancient times, and was associated with the mythology and religious beliefs of many cultures. The Romans named the planet after the Roman god Jupiter. When viewed from Earth, Jupiter can reach an apparent magnitude of −2.94, bright enough to cast shadows, and making it on average the third-brightest object in the night sky after the Moon and Venus. (Mars can briefly match Jupiter's brightness at certain points in its orbit.) Jupiter is primarily composed of hydrogen with a quarter of its mass being helium, although helium only comprises about a tenth of the number of molecules. It may also have a rocky core of heavier elements, but like the other gas giants, Jupiter lacks a well-defined solid surface. Because of its rapid rotation, the planet's shape is that of an oblate spheroid (it possesses a slight but noticeable bulge around the equator). The outer atmosphere is visibly segregated into several bands at different latitudes, resulting in turbulence and storms along their interacting boundaries. A prominent result is the Great Red Spot, a giant storm that is known to have existed since at least the 17th century when it was first seen by telescope. Surrounding Jupiter is a faint planetary ring system and a powerful magnetosphere. There are also at least 67 moons, including the four large moons called the Galilean moons that were first discovered by Galileo Galilei in 1610. Ganymede, the largest of these moons, has a diameter greater than that of the planet Mercury.
Jupiter has been explored on several occasions by robotic spacecraft, most notably during the early Pioneer and Voyager flyby missions and later by the Galileo orbiter. The most recent probe to visit Jupiter was the Pluto-bound New Horizons spacecraft in late February 2007. The probe used the gravity from Jupiter to increase its speed. Future targets for exploration in the Jovian system include the possible ice-covered liquid ocean on the moon Europa.